联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2018-04-21 12:13

# Give-Me-Some-Credit


# This code is using XGboost in R

library(xgboost)

require(xgboost)


require(methods)


train = read.csv('train.csv',header=TRUE,stringsAsFactors = F)


test = read.csv('test.csv',header=TRUE,stringsAsFactors = F)


train = train[,-1]


test = test[,-1]


y = train[,ncol(train)]


y = gsub('Class_','',y)


y = as.integer(y)-1 #xgboost take features in [0,numOfClass)


x = rbind(train[,-ncol(train)],test)


x = as.matrix(x)


x = matrix(as.numeric(x),nrow(x),ncol(x))


trind = 1:length(y)


teind = (nrow(train)+1):nrow(x)


# Set necessary parameters


param <- list("objective" = "binary:logistic",

             "eval_metric" = "auc",

             "num_class" = 2,

             "nthread" = 10)


# Run Cross Valication


cv.nround = 50


bst.cv = xgb.cv(param=param, data = x[trind,] , label = y,

               nfold = 10, nrounds=cv.nround)


# Train the model


nround = 100


bst = xgboost(param=param, data = x[trind,], label = y, nrounds=nround)


# Make prediction


pred = predict(bst,x[teind,])


pred = matrix(pred,2,length(pred)/2)


pred = t(pred)


# Output submission


pred = format(pred, digits=2,scientific=F) # shrink the size of submission


pred = data.frame(1:nrow(pred),pred)


write.csv(pred,file='submission.csv', quote=FALSE,row.names=FALSE)


period <- 120


FullList <- 1:120


x <- train$MonthlyIncome


# "randomly" make 15 of the points "missing"


MissingList <- sample(x,15)


x[MissingList] <- NA


# Create sine curve with noise


y <- sin(2*pi*x/period) + runif(length(x),-1,1)


# Plot points on noisy curve


plot(x,y, main="Sine Curve + 'Uniform' Noise")


mtext("Using loess smoothed fit to impute missing values")


y.loess <- loess(y ~ x, span=0.75, data.frame(x=x, y=y))


y.predict <- predict(y.loess, data.frame(x=FullList))


# Plot the loess smoothed curve showing gaps for missing data


lines(x,y.predict,col=i)


y.Missing <- predict(y.loess, data.frame(x=MissingList))


points(MissingList, y.Missing, pch=FILLED.CIRCLE<-19, col=i)






版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp