联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> CS作业CS作业

日期:2024-06-18 06:37

MATH21112 Rings and Fields

Example Sheet 4

Fields, Nilpotents and Idempotents

1.  Show that Q[i] = {a + bi j a, b ∈ Q} (where i2  = -1) is a field.

2.  Let R be the polynomial ring Z8 [X].  Show that the polynomial 1 + 2X is invertible in R.

(Hint: consider powers of 1 + 2X.)

3.  Let R be a commutative ring.  Prove that if a and b are nilpotent elements of R, then a + b is nilpotent.

4.  Suppose that  R is a ring such that a2  = a for every a ∈ R.  Show that a = -a for all a ∈ R.

Show that R is commutative.  (Hint:  consider (a + b)2 .)

5.  Prove  that  if R is a domain then there are  no  nilpotent elements other than 0 and no idempotent elements other than 0 and 1.

6.  Find all idempotent and all nilpotent elements in the  ring Z6  × Z12 .

7.  Let R be a finite integral domain.  Prove that R is a field.

(Hint: use a similar argument to that used in Lemma 2.12 where we showed that Zp  is an integral domain and a field when p is prime.)


版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp