联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> C/C++编程C/C++编程

日期:2022-10-23 12:13

MAST20018 – Introduction to Discrete Mathematics and Operations Research

Assignment 4

1. Is the following tableau optimal

x1 x2 x3 x4 x5 RHS

x2 0 1 0 1/6 0 2/3

x3 2 0 1 1/2 0 10

x5 1 0 0 5/2 1 19

z 4 0 0 31 0 460

under the circumstances below? If it is optimal, also state the value of the optimal objective

function.

(a) The problem is a minimisation problem and the z-row of the tableau was initialised with

the cost vector (ct).

(b) The problem is a maximisation problem and the z-row of the tableau was initialised with

the cost vector (ct).

(c) The problem is a minimisation problem and the z-row of the tableau was initialised with

the negative of the cost vector (?ct).

(d) The problem is a maximisation problem and the z-row of the tableau was initialised with

the negative of the cost vector (?ct).

2. Consider the linear program

max 5x + y

s.t.

x + y ≤ 7

x? y ≤ 3

x, y ≥ 0

(a) Derive the dual linear program.

(b) Plot the feasible regions to both the primal and the dual problems.

(c) Solve the primal problem using the simplex method. In each iteration, indicate on the

graphs both the current primal basic feasible solution and its corresponding dual solution.

1

MAST20018 – Introduction to Discrete Mathematics and Operations Research

3. The simplex method is a typically efficient algorithm for solving linear programs. However,

there is no version of it that has been shown theoretically to solve any linear program in

polynomial time. In fact, it is much worse. In 1972, Klee and Minty came up with an example

in n dimensions that requires 2n ? 1 iterations if Dantzig’s rule1 is used to choose entering

variables. These problems are of the form

max

n∑

j=1

10n?jxj

s.t.

2

(

i?1∑

j=1

10i?jxj

)

+ xi ≤ 100i?1, i ∈ {1, 2, . . . , n}

xj ≥ 0, j ∈ {1, 2, . . . , n}.

(a) Write the problem for n = 3.

(b) Solve the problem using Dantzig-rule.

1For a maximisation problem, Dantzig’s rule asks to select as entering variable the non-basic variable with largest

reduced cost.


相关文章

版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp