联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> C/C++编程C/C++编程

日期:2024-03-31 06:26

Final Individual Project

Ac.F633 - Python Programming for Data Analysis Manh Pham

Final Individual Project

20 March 2024 noon/12pm to 10 April 2024 noon/12pm (UK time)

This assignment contains one question worth 100 marks and constitutes 60% of the total marks for this course.

You are required to submit to Moodle a SINGLE .zip folder containing a sin- gle Jupyter Notebook .ipynb file OR single Python script .py file, together with any supporting  .csv files  (e.g.   input  data  files.   However,  do  NOT  include  the ‘IBM 202001.csv.gz’ data file as it is large and may slow down the upload and sub- mission) AND a signed coursework coversheet.  The name of this folder should be your student ID or library card number (e.g.  12345678.zip, where 12345678 is your student ID).

In your answer script, either Jupyter Notebook .ipynb file or Python .py file, you do not have to retype the question for each task.  However, you must clearly label which task (e.g.  1.1,  1.2, etc) your subsequent code is related to, either by using a markdown cell (for .ipynb file) or by using the comments (e.g.  #1.1 or  ‘‘‘1.1’’’ for .py file).  Provide only ONE answer to each task.  If you have more than one method to answer a task, choose one that you think is best and most efficient.  If multiple answers are provided for a task, only the first answer will be marked.

Your submission .zip folder MUST be submitted electronically via Moodle by the 10 April 2024 noon/12pm  (UK time).  Email submissions will NOT be con- sidered. If you have any issues with uploading and submitting your work to Moodle, please email Carole Holroyd at [email protected] BEFORE the deadline for assistance with your submission.

The following penalties will be applied to all coursework that is submitted after the specified submission date:

Up to 3 days late - deduction of 10 marks

Beyond 3 days late - no marks awarded

Good Luck!

Question 1:

Task 1:  High-frequency Finance                                                                                 (Σ = 30 marks)

The data file IBM 202001.csv.gz’ contains the tick-by-tick transaction data for stock IBM in January 2020, with the following information:

Fields

Definitions

DATE

TIME M

SYM ROOT

EX

SIZE

PRICE

NBO

NBB

NBOqty

NBBqty

BuySell

Date of transaction

Time of transaction (seconds since mid-night) Security symbol root

Exchange where the transaction was executed Transaction size

Transaction price

Ask price (National Best Offer)

Bid price (National Best Bid)

Ask size

Bid size

Buy/Sell indicator (1 for buys, -1 for sells)

Import the data file into Python and perform the following tasks:

1.1: Write code to perform the filtering steps below in the following order:      (15 marks)

F1:  Remove entries with either transaction price, transaction size, ask price, ask size, bid price or bid size ≤ 0

F2:  Remove entries with bid-ask spread (i.e. ask price - bid price) ≤ 0

F3:  Aggregate entries that are (a) executed at the same date time (i.e. same ‘DATE’ and ‘TIME M’), (b) executed on the same exchange, and (c) of the same buy/sell indicator, into a single transaction with the median transaction price, median ask price, median bid price, sum transaction size, sum ask size and sum bid size.

F4:  Remove entries for which the bid-ask spread is more that 50 times the median bid-ask spread on each day

F5:  Remove entries with the transaction price that is either above the ask price plus the bid-ask spread, or below the bid price minus the bid-ask spread

Create a data frame called summary of the following format that shows the number and proportion of entries removed by each of the above filtering steps. The proportions (in %) are calculated as the number of entries removed divided by the original number of entries (before any filtering).

 

F1

F2

F3

F4

F5

Number

 

 

 

 

 

Proportion

 

 

 

 

 

Here, F1, F2, F3, F4 and F5 are the columns corresponding to the above 5 filtering rules, and Number and Proportion are the row indices of the data frame.

1.2: Using the cleaned data from Task  1.1,  write code to compute Realized Volatility  (RV), Bipower Variation  (BV) and Truncated Realized Volatility (TRV) measures (defined in the lectures) for each trading day in the sample using different sampling frequencies including 1 second (1s), 2s, 3s, 4s, 5s, 10s, 15s, 20s, 30s, 40s, 50s, 1 minute (1min), 2min, 3min, 4min, 5min, 6min, 7min, 8min, 9min,  10min,  15min,  20min and 30min.   The required outputs  are 3 data frames RVdf, BVdf and TRVdf (for Realized Volatility, Bipower Variation and Truncated Realized Volatility respectively), each having columns being the above sampling frequencies and row index being the unique dates in the sample.                  (10 marks)

1.3: Use results in Task 1.2, write code to produce a 1-by-3 subplot figure that shows the ‘volatility signature plot’ for RV, BV and TRV. Scale (i.e. multiply) the RVs, BVs and TRVs by 104  when making the plots.  Your figure should look similar to the following.

      (5 marks)

Task 2:  Return-Volatility Modelling                                                                          (Σ = 25 marks)

Refer back to the csv data file  ‘DowJones-Feb2022.csv’  that  lists the con- stituents of the Dow Jones Industrial Average (DJIA) index as of 9 February 2022 that was investigated in the group project.   Import the data file into Python.

Using your student ID or library card number (e.g.  12345678) as a random seed, draw a random sample of 2 stocks (i.e.  tickers) from the DJIA index excluding stock DOW.  Import daily Adjusted Close (Adj Close) prices for both stocks between 01/01/2010 and 31/12/2023 from Yahoo Finance. Com- pute the log daily returns (in %) for both stocks and drop days with NaN returns. Perform the following tasks.

2.1: Using data between 01/01/2010 and 31/12/2020 as in-sample data, write   code to find the best-fitted ARMA(p,q) model for returns of each stock that   minimizes AIC, with p and q no greater than 3. Print the best-fitted ARMA(p,q) output and a statement similar to the following for your stock sample.

Best-fitted  ARMA model  for  WBA:  ARMA(2,2)  -  AIC  =  11036.8642

Best-fitted  ARMA model  for  WMT:  ARMA(2,3)  -  AIC  =  8810.4277              (5 marks)


2.2: Write code to plot a 2-by-4 subplot figure that includes the following diag- nostics for the best-fitted ARMA model found in Task 2.1:

Row 1: (i) Time series plot of the standardized residuals, (ii) histogram of the standardized residuals, fitted with a kernel density estimate and the density of a standard normal distribution, (iii) ACF of the standardized residuals, and (iv) ACF of the squared standardized residuals.

Row 2: The same subplots for the second stock.

Your figure should look similar to the following for your sample of stocks.

Comment on what you observe from the plots.                                                     (6 marks)



2.3:  Use the same in-sample data as in Task 2.1, write code to find the best- fitted AR(p)-GARCH(p* , q* ) model with Student’s terrors for returns of each stock that minimizes AIC, where p is fixed at the AR lag order found in Task 2.1, and p*  and q*  are no greater than 3.  Print the best-fitted AR(p)- GARCH(p* , q* ) output and a statement similar to the following for your stock sample.

Best-fitted  AR(p)-GARCH(p*,q*) model  for  WBA:  AR(2)-GARCH(1,1)  -  AIC =  10137.8509

Best-fitted  AR(p)-GARCH(p*,q*) model  for  WMT:  AR(2)-GARCH(3,0)  -  AIC

=  7743.4547                                                                                                         (5 marks)

2.4: Write code to plot a 2-by-4 subplot figure that includes the following diag- nostics for the best-fitted AR-GARCH model found in Task 2.3:

Row 1: (i) Time series plot of the standardized residuals, (ii) histogram of the standardized residuals, fitted with a kernel density estimate and the density of a fitted Student’s t distribution, (iii) ACF of the standardized residuals, and (iv) ACF of the squared standardized residuals.

Row 2: The same subplots for the second stock.

Your figure should look similar to the following for your sample of stocks.

Comment on what you observe from the plots.                                                     (6 marks)


2.5: Write code to plot a 1-by-2 subplot figure that shows the fitted conditional volatility implied by the best-fitted AR(p)-GARCH(p* , q* ) model found in Task 2.3 against that implied by the best-fitted ARMA(p,q) model found in Task 2.1 for each stock in your sample. Your figure should look similar to the following.

(3 marks)

Task 3:  Return-Volatility Forecasting                       (Σ = 25 marks)

3.1: Use data between 01/01/2021 and 31/12/2023 as out-of-sample data, write code to compute one-step forecasts, together with 95% confidence interval (CI), for the returns of each stock using the respective best-fitted ARMA(p,q) model found in Task 2.1. You should extend the in-sample data by one obser- vation each time it becomes available and apply the fitted ARMA(p,q) model to the extended sample to produce one-step forecasts.   Do  NOT  refit  the ARMA(p,q) model for each extending window.   For each stock, the forecast output is a data frame with 3 columns f, fl and fu corresponding to the

one-step forecasts, 95% CI lower bounds, and 95% CI upper bounds.                 (5 marks)

3.2: Write code to plot a  1-by-2  subplot figure  showing the one-step return forecasts found in Task 3.1 against the true values during the out-of-sample period for both stocks in your sample. Also show the 95% confidence interval of the return forecasts. Your figure should look similar to the following.

           (3 marks)

3.3: Write code to produce one-step analytic forecasts, together with 95% confidence interval, for the returns of each stock using respective best-fitted AR(p)-GARCH(p? , q? ) model found in Task 2.3. For each stock, the forecast output is a data frame with 3 columns f, fl and fu corresponding to the one-step forecasts, 95% CI lower bounds, and 95% CI upper bounds.                  (4 marks)

3.4: Write code to plot a  1-by-2  subplot figure  showing the one-step return forecasts found in Task 3.3 against the true values during the out-of-sample period for both stocks in your sample. Also show the 95% confidence interval of the return forecasts. Your figure should look similar to the following.

(3 marks)

3.5:  Denote by et+h|t  =  is the difference between the observed value yt+h  and an h+h|t produced by a forecast model. Four popular metrics to quantify the accuracy of the forecasts in an out-of-sample period with T′ observations are:


The closer the above measures are to zero, the more accurate the forecasts. Now, write code to compute the four above forecast accuracy measures for one-step return forecasts produced by the best-fitted ARMA(p,q) and AR(p)- GARCH(p* ,q* ) models for each stock in your sample.  For each stock, produce a data frame containing the forecast accuracy measures of a similar format to the following, with columns being the names of the above four accuracy measures and index being the names of the best-fitted ARMA andAR-GARCH model:

 

MAE

MSE

MAPE

MASE

ARMA(2,2)

AR(2)-GARCH(1,1)

 

 

 

 

Print a statement similar to the following for your stock sample:

For  WBA:

Measures  that  ARMA(2,2) model  produces  smaller  than  AR(2)-GARCH(1,1) model:

Measures  that  AR(2)-GARCH(1,1) model  produces  smaller  than  ARMA(2,2)

model:    MAE,  MSE,  MAPE,  MASE .                                                                         (5  marks3.6: Using a 5% significance level, conduct the Diebold-Mariano test for each

stock in your sample to test if the one-step return forecasts produced by the best-fitted ARMA(p,q) andAR(p)-GARCH(p* ,q* ) models are equally accurate based on the three accuracy measures in Task 3.5. For each stock, produce a data frame containing the forecast accuracy measures of a similar format to the following:

 

MAE

MSE

MAPE

MASE

ARMA(2,2)

AR(2)-GARCH(1,1) DMm

pvalue

 

 

 

 

where ‘DMm’ is the Harvey, Leybourne & Newbold (1997) modified Diebold- Mariano test statistic (defined in the lecture), and ‘pvalue’ is the p-value asso- ciated with the DMm statistic.  Draw and print conclusions whether the best- fitted ARMA(p,q) model produces equally accurate, significantly less accurate or significantly more accurate one-step return forecasts than the best-fitted AR(p)-GARCH(p* ,q* ) model based on each accuracy measure for your stock sample.

Your printed conclusions should look similar to the following:

For  WBA:

Model  ARMA(2,2)  produces  significantly  less  accurate  one-step  return forecasts  than model  AR(2)-GARCH(1,1)  based  on  MAE .

Model  ARMA(2,2)  produces  significantly  less  accurate  one-step  return forecasts  than model  AR(2)-GARCH(1,1)  based  on  MSE .

Model  ARMA(2,2)  produces  significantly  less  accurate  one-step  return forecasts  than model  AR(2)-GARCH(1,1)  based  on  MAPE .

Model  ARMA(2,2)  produces  significantly  less  accurate  one-step  return

forecasts  than model  AR(2)-GARCH(1,1)  based  on  MASE .                           (5 marks)


Task 4:                                                                                                                                (Σ = 20 marks)

These marks will go to programs that are well structured, intuitive to use (i.e. provide sufficient comments for me to follow and are straightforward for me to run your code), generalisable (i.e.  they can be applied to different sets of stocks (2 or more)) and elegant (i.e.  code is neat  and shows some degree of efficiency).





版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp