联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> Database作业Database作业

日期:2025-01-26 07:35

Tutorial EG501V Computational Fluid Dynamics (AY 2023/24)

Tutorial 2. Incompressible Navier-Stokes equations

In Lecture Notes 1 the Navier-Stokes equations (momentum balance) for incompressible flow were derived. They were eventually written in the following form.

In this equation, the viscosity μ and the density ρ are constants. We now consider two simple flow configurations.

Config. 1. The steady state flow of a liquid in the space between two very large static parallel plates at distance H of each other in the presence of a constant pressure gradient in the x-direction Gravity is pointing in the negative y-direction.

Config. 2. The start-up of the flow of liquid between two very large parallel plates at distance H of each other. There is no pressure gradient. Before time t=0 everything is standing still. At t=0, the upper plate starts moving with a constant velocity U. In this configuration we do not   consider gravity.

Your assignments

For Configuration 1:

a.  Begin with the full, two-dimensional Navier-Stokes equations and determine which of the terms are zero and which are not.

b. Derive an expression for the velocity ux as a function of y by applying the simplified NS  equations (as found under Item a.) and by applying the no-slip condition at the two plates.

For Configuration 2:

c.  Begin with the full, two-dimensional Navier-Stokes equations and determine which of the terms are zero and which are not.

d. Make sure that when steady state has been reached ( t → ∞ ), the simplified form of theNS equations as found under Item c. leads to a linear velocity profile between the plates.




版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp