联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> Algorithm 算法作业Algorithm 算法作业

日期:2025-02-18 11:27

EMATM0066

Visual Analytics Exercises: Week 1

In this first tutorial, we will do two exercises in groups.

Exercise 1

Warm-up for whole class. For each of the following variables, define its type and identify any unusual features that might make its visualisation or analysis challenging:

1.   Email address

2.   Date of birth

3.   Cruising speed of an airplane

4.   Hurricane force scale (Saffir-Simpson

https://www.nhc.noaa.gov/aboutsshws.php#:~:text=The%20Saffir%2DSimpson%20H urricane%20Wind,scale%20estimates%20potential%20property%20damage.&text=I n%20the%20western%20North%20Pacific,sustained%20winds%20exceeding%2015 0%20mph. )

5.   Bank balance

6.   Country

7.   MSc grades (Pass, Merit, Distinction)

Exercise 2

In your groups consider one of the following scenarios for time series data:

•     Scenario 1: sample every 1/100th  of a second (100Hz), duration 1 day, 1 thing.

o  Example: ECG recording

•     Scenario 2: sample every 5 minutes, duration 1 year, 2 things.

o  Example: Currency exchange rates: British pound against US dollar; British pound against euro.

•     Scenario 3: sample every 5 minutes, duration 1 year, 10 things.

o  Example: Many currency exchange rates

•     Scenario 4: sample every 5 minutes, duration 1 year, 1000 things.

o  Example: CPU load across 1000 machines

•     Scenario 5: sampling frequency varying from 100Hz to every minute, duration 1 day,

5 things.

o  Example: Health monitoring in hospital ward.

Your group has ~20 minutes to brainstorm possible strategies for visualization that you think  would be appropriate for your assigned scenario. Both static charts and interactive strategies are worth thinking about. You’ll be reporting back to the large group afterwards, so decide in  advance which person will speak for the group.

Document your discussion in your group’s shared document, as you go. Words are quick to type. You should also make sketches to communicate your ideas, whenever words alone aren’t enough. You can sketch on paper and take a picture with your phone camera, or use a drawing program on a tablet or laptop – whatever is quick and easy – and upload those images into your shared document.

Exercise 3

In this exercise you will identify the types of datasets and attributes. These datasets are taken from the Office of National Statistics website but are more immediately accessible from the Blackboard page as attachments.

•    Estimates of completed international visits to and from the UK for on month

https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/datasets/ monthlyoverseastravelandtourismreferencetables

•    Travelpac Quarterly data on travel to and from the UK, taken from the International Passenger Survey (IPS). Includes detail on age and sex of travellers, purpose and length of trip, and spending.

https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/datasets/t ravelpac

NSA = ‘non-seasonally adjusted’: why do you think that seasonal adjustment is important for travel statistics?

For each field

•     Analyze the attribute abstractions:

•     write down a concise description in domain-dependent language of field’s meaning

•     decide the attribute type and write that down

•     Determine its cardinality/range

•     For categorical attributes, write down the number of unique levels

•     For quantitative attributes, specify the range from min to max and note any  other characterization that seems potentially useful (cyclic? Anything else?)

•     For ordered attributes, consider whether it would be more useful to treat them categorical or quantitative, or to preserve them as ordered.

Write down your discussions in the shared document.





版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp