联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> Web作业Web作业

日期:2025-03-13 05:29

MATH1014

Calculus II

Problem Set 4

L01 (Spring 2025)

1.     For each of the following rational functions  f, evaluate the antiderivative   f(x)dx.

2.     Evaluate the following antiderivatives.

3.     (a)     Using the factorization  x4  + 1 =  (x2  − 2x + 1)(x2  + 2x + 1), evaluate

(b)    Using (a) and the substitution  u  = tan x, evaluate

4.     Evaluate the antiderivative

 

using the substitution 

5.     (a)     Show that the polynomial  x 3  + 3x + 1   has exactly one real root.

(b)    Let  r   be the real root of  x 3  + 3x + 1.     Using a partial fraction decomposition, evaluate

 

in terms of  r.

6.     Evaluate the antiderivatives of each of the following trigonometric rational functions  f.

7.     Let  a  be apositive real number.     Evaluate

 

for each of the following cases:

(a)    0 < a < 1,

(Try to find antiderivatives just on   (−π, π); antiderivativeson  ℝ  are too complicated.)

(b)   a = 1,

(c)    a > 1.

8.     Evaluate the antiderivative

 

using the substitution  t = tan(x/2).

9.     Evaluate each of the following improper integrals if it converges.

 

Hint:         In (c), break the interval into two halves, and let    in the second half.

10.   Let  f: [0, +∞) → ℝ   be the function

 

(a)    Find  f  (x)  for every  x  ∈ (0, +∞).

(b)    Evaluate the improper integral

 




版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp