联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> CS作业CS作业

日期:2025-02-13 05:38

Midterm 1 Review Lab

Principles of Functional Programming

Spring 2025


1    Preamble

1.1    Midterm 1 Topics

The topics you can expect to be tested on the first midterm are:

  Types

  Evaluation

  Declarations

–  Bindings

  Function calls

•  Equivalence (including totality)

  Recursion (including tail-recursion)

 Induction

 Weak/standard

–  Strong

  Structural

  Lists

  Datatypes

•  Trees

 Work/Span

Here is a collection of advice regarding how to prepare for the upcoming midterm:

1.  List out the topics that you require the most review on and complete review lab problems that test those concepts.

•  Note: Problems have been labeled by the most relevant topics that they test.

2.  Review your homeworks with a focus on the mistakes you made or the problems you missed. Make sure to understand why your solution was incorrect and please ask a TA if you need help understanding why!

•  Note:  Exam  questions  will likely be easier than homework questions.  However, a deeper conceptual understanding will be beneficial regardless.

3.  Make a cheat sheet!  The professors will usually allow a cheat sheet on the exam.  Some helpful things to put on your cheat sheet are:

  definitions (e.g. totality, valuability, extensional equivalence)

•  interesting function implementations  (i.e.   functions that you didn’t know how to implement upon first glance)

•  common mistakes you made on previous assignments and how to avoid them

•  SML syntax, in case you are still rusty in certain areas

 words of encouragement :)

4.  Revisit past labs and lecture notes for further practice/review.

2    Conceptual T/F

For each of the following tasks, indicate whether the statement is true or false.

2.1    Basics Task 2.1.

Expressions that are not well-typed will not be evaluated.

Task 2.2.

If an expression is well-typed, then it is valuable.

Task 2.3.

If e1 =→ e2, then e1  e2 .

Task 2.4.

If e1  e1 =→ e2 .

Task 2.5.

SML evaluates the arguments to a function before stepping through the body of the function.

Task 2.6.

If a function f   :   t1   ->  t2 is valuable, then it is total.

Task 2.7.

case   (3  +   1)   of   (2  +   2)  =>   " four "   |   _   =>   " not   four " reduces to  " four " .

Task 2.8.

fn   (x   :   int)   :   int  =>  x  +   1  +   1 reduces to fn   (x   :   int)   :   int  =>  x  +  2

.

Task 2.9.

The following declares a recursive function foo   :   int   - >   int :

val   foo   =   ( fn   (0   :   int)  =>  0   |   n  =>   1  +   foo   (n   -   1))


2.2    Induction/Recursion

Task 2.10.

Consider the following declaration for foo   :   int   - >   int.  If we want to prove a theorem about foo  n for all positive n   :   int, we can use simple/weak induction to do so.

|   foo   (n   :   int)   :   int   =   foo   (n   -   1)  +   foo   (n   -  2)

Task 2.11.

For which values of (A) and (B) is f   150 valuable?

|   f   (n   :   int)   :   int   =  f   (n   -   1)  +  f   (n   -  2)

(a)  (A) is 0 ,  (B) is 1 . (b)  (A) is 0 ,  (B) is 2 .

(c)  (A) is 1 ,  (B) is 2 .

(d)  (A) is 1 ,  (B) is 50 .

Task 2.12.

Any statement that can be proven by weak induction can also be proven by strong induction.

For Tasks 2.13 and 2.14, suppose we are given the implent ions of two functions f   :   int ->  t and g   :   int   ->  t.  We want to show that  f  x = g  x for all values x ≥ 0  (where x   :   int).  (If a task is false, provide a (small) correction to the IH that could potentially make it work.)

Task 2.13.

The following could be a valid inductive hypothesis in an induction proof:

IH: Assume that for all values x   :   int, we have  .

Task 2.14.

In a strong induction proof, our inductive hypothesis does not have to cover the values of any of our base cases.  For example, the quantification for y in the inductive hypothesis below is correct.

BC 1: x = 0 .  (proof omitted) BC 2: x = 1 .  (proof omitted) IS: x > 1 .

IH: Assume that for all values y   :   int satisfying 2 ≤ y < x, we have  .



Task 2.15.

Implement the tail-recursive helper function max ’ such that max satisfies the following specs:

max : int list -> int option

REQUIRES: true

ENSURES: max L =⇒ ( SOME NONE v if if v L is the max element of is empty. L

fun  max ’   (L   :  int   list ,   acc   :  int   option)   :  int   option   = raise  Fail   " your   implementation   here "

fun  max   (L   :   int   list)   :   int   option   =  max ’   (L,  NONE)

2.3    Lists/Datatypes

Task 2.16.

1::2::3::[] is a value.

Task 2.17.

The type and datatype keywords are interchangeable (i.e. type and datatype declara-

tions are the same).

Task 2.18.

Node has type tree, where the datatype declaration for tree is as follows: datatype   tree  =   Empty   |   Node   of  tree   *   int   *  tree

Task 2.19.

Given the following datatype declaration for varTree , Two   (One  x,  _ ) is a valid pat-

tern.

datatype   varTree   =   Zero   |   One   of   varTree   |   Two   of   varTree   *

varTree

Task 2.20.

With structural induction on trees, we induct directly on the number of nodes in the tree.

2.4    Work/Span

Task 2.21.


The following implementation of rev   :   int   list   - >   int   list has O(n) work, where n is the length of the input list.

fun   rev   ([]   :   int  list)   :  int  list   =   [] |   rev   (x::xs)  =   (rev   xs)  @   [x]

Task 2.22.

The best-case work for calling inord is when the input tree is balanced.

fun   inord   (Empty   :  tree)   :   int   list  =   []

|   inord   (Node   (L,  x,  R))  =   (inord  L)  @   (x   ::   (inord  R))

Task 2.23.

When calculating span, we assume that expressions in tuples are evaluated in parallel.

Task 2.24.

When calculating span, we assume that  val declarations in  let ... in ... end  expressions

are executed in parallel.

Task 2.25.

Suppose the recursive function foo has input type tree.  In the tree method, the work tree

for foo always has 2i  nodes at level i when the input tree is balanced.

Task 2.26.

If the work of a function is in O(f(n)), then its span is also in O(f(n)).

3    Types and Evaluation

Assume the following is in scope:

datatype   tree  =   Empty   |   Node   of  tree   *   int   *  tree

For each of the following declarations:

• If it typechecks, give the type of v; otherwise state “not well typed.”  and explain why it has no type.

 If v is valuable, give its value.  Otherwise, give  no value.”  and explain why it has no

value.

Task 3.1.  (Recommended) val  v  =  3  /  2

Task 3.2.

val  v  =  3  +   2 . 0

Task 3.3.  (Recommended)

val  v  =   1   div   0

Task 3.4.  (Recommended)

val  v  =  fn  x   :   int   =>  x  +   1

Task 3.5.

val  v  =  fn   (x,  y)  =>  x   andalso   y  =  3

Task 3.6.  (Recommended)

val  v  =  fn   (x   :   int)  =>  Node   (Empty ,  x,   Empty)

Task 3.7.

val  v  =   ()

Task 3.8.  (Recommended)

val  v  =   [[1]]   @   []

Task 3.9.

val  v  =   [150]   ::   []

Task 3.10.

val  v  =  fn   (x   :   int)  =>  x   ::   [1]

Task 3.11.  (Recommended)

val  v  =   ( fn   (x   :   int   list)  =>  x   ::   [])   [1]

Task 3.12.

fun  v   (x   :   int)   :   int   =  x  =  3

Task 3.13.  (Recommended)

val  v  =   if   5   >  0  then   " polly "   else   150

Task 3.14.

fun  v   (Empty)  =   []

|   v   (Node   (l,  x,  r))  =  v  l  @  x  @  v  r

Task 3.15.  (Recommended)

fun  v   (a,   [])   =   ([a],  a  +   1)

|   v   ( _ ,  x   ::   xs)  =  v   ( not  x,  xs)

Task 3.16.  (Recommended)

val  v  = let

fun  g   []  =  g   ([ " 150 " ])

|   g   (x   ::   xs)  =  x   ^  g  xs

in

(g,  g   [],  g   [ " 3 " ])

end

 

 

 



版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp