联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> CS作业CS作业

日期:2025-02-13 05:38

Homework 2

Part 1

PCA

1. PCA can be explained from two different perspectives. What are the two perspectives explained in class?

2. The first principal direction is the direction in which the projections of the data points have the largest variance in the input space. We use λ1 to represent the first/largest eigenvalue of the covariance matrix, w1 to denote the corresponding principal vector/direction (w1  has unit length i.e., its L2 norm is  1), μ to represent the sample mean, and x to represent a data point. The deviation of x from the mean μ is x − μ . The forward transform, y = PCA(x), is implemented in sk-learn with "whiten=True".

(1) write down the scalar-projection of the deviation x − μ in the direction of w1 ?

(2) what is the first component of y ?

note: compute it using w1   , x, μ ,  and λ1

(3) assuming y only has one component, then we do inverse transform. to recover the input

 ̃(x) = PCA−1(y)

computẽ(x) using μ, y, λ1  and w1

(4) assuming x andy have the same number of elements, and we do inverse transform to recover the input

 ̃(x) = PCA−1(y)

what is the value of x −̃(x) ?

Note: the question asks for a value/number, not equations

(5) For face image generation applications shown in class, what is the major difference between the two methods: eigenface vs. statistical shape model ?

Maximum Likelihood Estimation and NLL loss

(This is a general method to estimate parameters of a PDF using data samples)

3. Maximum Likelihood Estimation when the PDF is an exponential distribution.

We have Ni.i.d. (independently and identically distributed) data samples {x1, x2, x3, … , xN } generated from a PDF that is assumed to be an exponential distribution. xn  ∈ ℛ+ for n  = 1 to N, which means they are positive scalars. This is the PDF:

 

Your task is to build an NLL (negative log likelihood) loss function to estimate the parameter λ of the PDF from the data samples.

(1) write the NLL loss function: it is afunction of the parameter λ

(2) take the derivative of the loss with respect to λ , and set the result to 0. After some calculations, you will obtain an equation about λ  = ∗∗∗∗∗∗

Hint: read NLL in the lecture of GMM

4. Maximum Likelihood Estimation when the PDF is histogram-like.

A  histogram-like  PDF  f(x)  is  defined  on  a   1-dimensional  (1D)   space  that  is  divided  into  fixed regions/intervals.  So, f(x)  takes  constant  value   i    in  the  i-th  region.  There  are  K  regions.  Thus, {ℎ1, ℎ2, … , ℎk } is the set of (unknown) parameters of the PDF. Also,   iΔ i   = 1, where Δ i  is the width of the i-th region.

Now, we have a dataset of N samples {x1, x2, x3, … , xN }, and Ni  is the number of samples in the i-th region. The task is to find the best parameters of the PDF using the samples.

(1) write the loss function: it is a function of the parameters

Note: it is a constrained optimization problem, so we need to use the Lagrange multiplier method to convert constrained optimization to unconstrained optimization. Thus, we add λ(  iΔ i  − 1) and the NLL together to get the complete loss function, where λ is the Lagrange multiplier.

(2) take the derivative of the loss with respect to ℎ i , set it to 0, and obtain the best parameters along with the value of λ .

Is Bayes optimal ?

5. Bayes classifier has the minimum classification error assuming we know the true p(x|y) and p(y) . However, for many applications,  reaching the minimum classification error may not be the best objective. Now, let’s consider the application explained in the lecture:  there are two classes, class-0 and class-1.

In class-0, patients have aneurysms, but the aneurysms will not rupture

In class-1, patients have aneurysms, and the aneurysms will rupture almost immediately if left untreated, and therefore surgeries will be performed to prolong the life of the patients.

Assume these:

(a)  The patients in class-0 will live until the age of 100.

(b) The  patients  in  class-1  will  live  until  the  age  of  100  after  receiving  surgeries  but  will  die immediately if left untreated.

(c)  Ther risk of the surgery is ε between 0 and 1,e.g., ε=0.01 means there is a 1% chance that a patient may die during surgery.

Consider a patient at the age of 60, if the true class label of a patient is class-0, but this patient is misclassified to class-1, thus, this patient will get an unnecessary surgery and may die with the chance of ε . The average cost for this patient is 40×ε

Consider another patient at the age of 60, if the true class label of a patient is class-1, but this patient is misclassified to class-0, thus, this patient will not get surgery and die almost immediately. The cost of this misclassification is 40 years for this patient.

Now, we have data points {x1, x2, x3, … , xN } with true labels {y1, y2, y3, … , yN }, and xn  is the aneurysm

feature of the patient-n.  The current age of the patient-nistn.  We have this cost table for each patient:

True label yn

Predicted Label ̂(y)n

Cost for the patient-n

0

0

0

1

1

0

0

1

(100-tn)×ε

1

0

100-tn

̂(y)n  = f(xn; w) is a classification model with internal parameter w The value of ̂(y)n  isa real number between 0 and 1.

Your task: design a differentiable loss Ln(w) that is the cost of making a wrong classification on xn.

“differentiable” means  exists, so that  exists.

Part 2

Complete the task in H2P2T1.ipynb and H2P2T2.ipynb

Note: It is very time consuming to fit a GMM to high dimensional data, and therefore PCA + GMM is the "standard" approach.

Grading: the number of points

 

Undergraduate Student

Graduate Student

1 (PCA)

1

1

2 (PCA)

5

5

3 (NLL)

4

4

4 (NLL)

N.A.

5 bonus points

5 (loss)

10

10

H1P2T1

15

15

H2P2T2

15

15

Total number of points

50 +5

50 + 5

Extra Reading

PCA is widely used in many applications. Do a google scholar search with PCA + some field, e.g., PCA +bioinformatics or PCA + finance, you will find relevant papers.

https://www.nature.com/articles/s41467-018-04608-8

There are many variants of PCA, such as sparse PCA and kernel PCA that are implemented in sk-learn. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.7798&rep=rep1&type=pdf

https://www.di.ens.fr/sierra/pdfs/icml09.pdf

https://www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf

Which one is good for your application?  Test different algorithms and find the best. Remember that machine learning is more like an experimental science: you need to run lots of experiments.


版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp