联系方式

  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-23:00
  • 微信:codinghelp

您当前位置:首页 >> CS作业CS作业

日期:2025-11-19 07:23

Engineering Math 2: Laplace Transform. - Session 3 - Tutorial Questions

Convolution Integrals

1.  Solve the following equations using the convolution theorem:

2.  For the integral equation

Using the convolution theorem/ show that:

3. Using the convolution theorem/ show that for:

Integro-Differential Equations

4. Solve the integro differential equation:

5.   Solve the integro differential equation:

Transfer Functions

6. What is the transfer function of G(s) the block diagram shown below:

Transfer function is given by:

7. A second order differential equation that defines an engineering system is given by:

If this system has a discontinuous input defined by the Dirac delta function i(t) = 4δ(t 一 2)/ find the system’s output y(t)?

8.   The transfer function of a microelectromechanical system is given as:

What is the equation of motion describing the behaviour of the system in the time domain for a sinusoidal forcing function of amplitude 3 and period = π ?

Hint: Y(s) = I(s)G(s) and we have been given the system’s input in the question. Also, so we have all the information for L1 {I(s)}.

9.   An RC network is modelled by the equation:

where v(t) is the system response and the time varying input is e(t). Assume the initial condition V(0) = 0.

a.) Determine the transfer function G(s) for the system.

b.) What is the time response V(t) of the system for an impulse input e = δ(t)?


版权所有:留学生编程辅导网 2020 All Rights Reserved 联系方式:QQ:99515681 微信:codinghelp 电子信箱:99515681@qq.com
免责声明:本站部分内容从网络整理而来,只供参考!如有版权问题可联系本站删除。 站长地图

python代写
微信客服:codinghelp